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Abstract. Tunneling and dispersion of ultrasonic pulses
are investigated in 3D phononic crystals consisting of
0.8 mm-diameter tungsten carbide beads that are close
packed in a fcc crystal array embedded in either water or
epoxy. Pulsed ultrasonic techniques allow us to measure
the phase velocity and group velocity, i.e. the dynamics of
wave propagation, as well as the transmission coefficient.
Our experimental data are well interpreted using multiple
scattering theory (MST). In the tungsten carbide/water
crystals, dispersion phenomena were studied at frequencies
in and around the gap in the GL direction. A strong sup-
pression of the group velocity, and large variations of the
group velocity dispersion (GVD) were found at frequen-
cies around the band edges. By contrast, fast group veloci-
ties and nearly constant GVD with values around zero
were observed at gap frequencies, indicating that tunneling
in phononic crystals is essentially dispersionless. In the
tungsten carbide/epoxy crystals a wide gap (to our knowl-
edge, largest measured 3D band gap) was measured cov-
ering a frequency range from 1.2 MHz to 4.3 MHz along
the GL crystal direction. The agreement between the theo-
ry and experiments gives strong evidence for the existence
of a large complete gap (1.5 MHz to 3.9 MHz), which is
theoretically predicted from the band structure calcula-
tions.

1. Introduction

During the past two decades, increasing attention has been
drawn to two new types of artificial material, photonic
crystals and phononic crystals. Phononic and photonic
crystals are periodic elastic or dielectric composites with
lattice constants comparable to the wavelength of sound or

light [1–50]. In other words, they are acoustic (ultrasonic
or sonic) and electromagnetic (optical or microwave) ana-
logues of atomic crystals. Due to the periodicity of these
crystals, there can be frequency ranges where wave propa-
gation is forbidden, giving rise to spectral gaps, which are
analogous to electronic band gaps. Because photonic and
phononic crystals are similar in many ways, we first out-
line some of the essential developments related to the
photonic crystals, before focusing on phononic crystals.

Much of the initial interest in photonic crystals re-
volved around the question of whether complete photonic
band gaps, i.e., frequency ranges where optical modes are
forbidden along all crystal directions, could be realized,
and if they could, what interesting properties would result
[1, 2]. For example, a perfect photonic crystal would pro-
vide perfect dielectric mirrors at the gap frequencies. Intro-
duction of point defects and/or line defects in a perfect
photonic crystal would trap the light around and/or along
the defects, with potential applications as micro-cavities
and/or wave guides. Thus photonic crystals provide a way
of blocking, trapping and channeling light. Many theoreti-
cal investigations have shown that the appearance of com-
plete gaps requires the optimization of many parameters,
such as the refractive index contrast, lattice type, filling
fraction and “atom” configurations [4–12]. Experimen-
tally, photonic crystals have been constructed with differ-
ent dimensions at different frequency ranges, although the
fabrication of high quality 3D photonic crystals with band
gaps in the visible regime remains a challenge. Another
way of “channeling” light was proposed more recently by
employing the super-prism and super-lens effects, where
the propagation of light is sensitive to the frequency and
incident angle of the incident beam [14, 15]. This method
is based on the anisotropy of the equifrequency surfaces
and complete band structures are not required. One exam-
ple of a potential application of these effects is in wave-
length-division multiplexed (WDM) communication for
telecommunications or data links. In terms of basic phy-
sics, localization [16–18] and wave dynamics [19–22] for
waves at the frequencies in and around band gaps has also
been explored. It was found that a single photon or wave
pulse could tunnel through a finite slab of the crystals at
gap frequencies [19–21], while at the band edges, a
strong reduction of the group velocity and large dispersion
effects were observed [22].
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Elastic (or acoustic) wave propagation in phononic
crystals has also gained much attention recently because
of the rich physics that arises from the additional physical
parameters that enter the problem. These include the den-
sity contrast and Lamé constants, as well as the existence
of longitudinal wave modes and their mixture with trans-
verse waves [23–50]. Potential applications of phononic
crystals, e.g., in noise-proof devices and sound filters,
have also attracted much interest [38, 40]. Compared with
the extensive exploration of photonic crystals, the study of
phononic crystals has a shorter history, during which
much of the attention has been mainly focused on the ex-
istence of complete phononic band gaps.

Underpinning many of the phononic crystal research ef-
forts are theoretical predictions/simulations of phononic
band structures. The plane-wave (PW) method [23–25],
based on the expansion of the periodic coefficients (density,
velocities) in the wave equation as Fourier sums, has been
the most popular approach. Using this model, extensive
band-structure calculations for acoustic or elastic waves pro-
pagating in 2D (rods in a host material) and 3D (scatterers
in a homogenous matrix) periodic composites have been
performed, where both the rods/scatterers and matrix are
either fluids or solids. These calculations have shown how
the existence of a phononic band gap depends not only on
the crystal structure [52] but also on the density contrast,
velocity differences, the volume fraction of one of the two
components and their shapes. Among these parameters,
density contrast plays the most important role. Although the
PW model is very useful for predicting the properties of a
variety of systems, it is found to have convergence problems
in dealing with mixed crystals, such as solid scatterers in a
liquid matrix, due to the vanishing shear modulus in the
fluid component. Based on the KKR (Korringa, Kohn and
Rostoker) approach for electrons, a multiple scattering theo-
ry (MST) for acoustic and elastic band gap materials has
recently been developed [26–28]. MST yields more accu-
rate results than the PW approach for systems with spheri-
cal scatterers and can handle the mixed crystals, e.g., solid
scatterers in a liquid matrix. A layered MST [27, 28] was
also developed, which calculates the transmission and re-
flection for a finite system, thus providing a direct compar-
ison with the experiments. As will be seen later, the MST
gives an excellent description for our phononic crystals.

Compared to the theoretical studies, there have been
fewer experimental investigations of phononic crystals.
Also many of the previous experiments have involved
transmission measurements and 2D systems. The phase in-
formation, which is very important for delineating the wave
dynamics and investigating the band structure, has been ne-
glected in many of the experiments. In this paper, we sys-
tematically study ultrasonic wave transport through 3D
phononic crystals, using pulsed ultrasound techniques for
the experiments and the MST for the theoretical simula-
tions. The pulsed ultrasonic techniques allow us to measure
not only the frequency dependence of the transmission
coefficients but also the phase velocity and group velocity.
Hence a more complete picture of the wave dynamics is
obtained. In previous papers, we reported ultrasound tun-
neling and focusing by negative refraction in 3D mixed
crystals consisting of tungsten carbide beads in water

[43, 49]. Here, we continue the study of the same mixed
crystals, reviewing and extending our investigation of tun-
neling and presenting new data on anomalous dispersion in
and around the first band gap. In addition to the mixed crys-
tals, we discuss wave properties in solid crystals consisting
of tungsten carbide or steel beads in epoxy, where the exis-
tence of remarkably large band gaps is demonstrated.

This paper is structured as follows. Section 2 describes
the experimental measurements and the methods used to
analyze the data. It is followed by a short description of the
MST in Section 3. Results and discussion are given in Sec-
tions 4 and 5, where we compare theory with experiments
and interpret our experimental data for the two crystal sys-
tems. Finally, we present some conclusions in Section 6.

2. Experiment

Two types of phononic crystals were constructed. The first
is a “mixed” phononic crystal, with solid scatterers (tung-
sten carbide beads) immersed in a liquid matrix (water).
The other is a solid crystal with tungsten carbide or steel
beads embedded in epoxy. This choice of materials pro-
vides a large scattering contrast in our ultrasonic experi-
ments, due to the large differences in both the density and
velocity of the scatterers and the surrounding matrix mate-
rials (see Table 1).

For all the samples, the beads were assembled in a fcc
crystal structure with the beads packed in triangular layers
perpendicular to the body diagonal, or along the [111] direc-
tion. The beads are very monodisperse, with diameters of
0.800 mm (tungsten carbide) and 0.8014 mm (steel), which
made it possible to make very high quality crystals. Tem-
plates were designed to ensure the beads were constrained
in triangular layers that were arranged in an ABCABC . . . se-
quence. These templates had a flat hexagonal bottom with
outward sloping sidewalls, such that the angle of inclination
(with respect to the horizontal) of each adjacent wall alter-
nated between 54.74� and 70.33�. By putting the beads in
carefully by hand, we obtained very high quality crystals.
The samples had 49 beads on each side of the bottom hexa-
gonal layer, so that there were a large number of beads
(more than 6000) in each layer. Thus the boundary reflec-
tions at the perimeter of each layer could be neglected. For a
n-layer crystal, the thickness L of the crystal is
d½1þ ðn� 1Þ

ffiffiffiffiffiffiffiffi
2=3

p
�, where d is the diameter of the beads.

There were some differences in the templates for the
two different sample systems. The template for the tung-
sten carbide/water sample was made of acrylite. The beads
were placed horizontally on top of a substrate, which was
made sufficiently thick (7.1 cm) that multiple reflections

860 J. H. Page, S. Yang, Z. Liu et al.

Table 1. Properties of the component materials in our crystals.

Material Density
(kg/m3)

Longitudinal
velocity (km/s)

Shear
Velocity (km/s)

Tungsten carbide 13.8 6.655 3.23

Steel 7.67 6.01 3.23

Water 1.0 1.49 0

Epoxy 1.1 2.6 1.5
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of the ultrasonic pulse traveling in the substrate arrived
too late to interfere with the signals that were transmitted
through the crystals. However for the solid tungsten car-
bide/epoxy sample, a substrate was no longer needed to
hold the beads in place after the epoxy cured, so that it
was important to select a substrate material that allowed
the solid crystal to be easily pealed off the template after
it was made. Teflon was found to work well for this pur-
pose. For each template, all the parts were made sepa-
rately and were well polished to the required tolerances
before being screwed together.

The tungsten carbide/water samples were always held
horizontally in order to allow gravity to keep the beads in
place in the template, and obviate the need for a top plate
to prevent the beads from falling out. The ultrasonic
waves transmitted through the sample were measured by
placing the sample between two transducers and immer-
sing the whole system in a large water tank, which pro-
vided an excellent coupling medium between the ultraso-
nic transducers and the sample. A 1=2-inch-diameter planar
immersion generating transducer was placed far away
from the bottom of the sample and used to generate an
input pulse that was a plane wave to a good approxima-
tion. The transmitted pulses were detected by a receiving
transducer that was placed above the crystal. The detected
pulses were amplified with a low-noise bandpass ampli-
fier, averaged with a digital oscilloscope and then down-
loaded to a computer for further analysis. The input pulse
was determined by measuring the pulse transmitted
through the substrate alone, without the sample in place.

We assembled the solid crystals when the epoxy was in
a liquid state. From the many possible types of epoxy
available, we selected Maraglas 655, because it is hard,
has relatively little ultrasonic absorption, and has a long
working life, allowing the beads to be assembled in posi-
tion before the viscosity became too large. On completion
of the bead assembly process, the crystals, together with
the template, were put in an oven at 60 �C for 48 hours to
let the epoxy cure. The solid samples were then taken out
from the template, and any excess epoxy was polished off.
For the solid crystals, the sample was oriented vertically,
and the sample signals were compared directly with refer-
ence pulses in water.

3. Theory

As mentioned in the Introduction, the PW theory fails to
give an accurate description of mixed composites, such as

solid scatterers in a liquid host. Based on Korringa-Kohn-
Roskoker (KKR) theory for electronic band-structure cal-
culations, we use a multiple scattering theory (MST) for
elastic systems with spherical scatterers. By calculating the
exact Mie scattering for a single scatterer and solving the
resulting secular equation for the whole system, one can
determine the band structure of the phononic crystal. De-
tails of the calculation can be found in Liu et al. [28].

To get a direct comparison between the theory and ex-
periments, we also developed a layer MST for a slab of
crystal with a finite number of layers of beads. The key of
this approach is the combination of the scattering matrix
relating the input and scattered waves for two single-layer
crystals to get the scattering matrix for a 2-layer crystal,
as illustrated in Fig. 1. Repeating this procedure, the scat-
tering matrix for a crystal with arbitrary number of layers
can be obtained. For a multi-layer crystal with thickness
L, the transmitted wave is given by

TðL;wÞ ¼ AðL;wÞ exp ½ijðL;wÞ� ; ð1Þ
where A is the transmitted amplitude normalized by the
incident wave (i.e., the transmission coefficient), and j is
the cumulative phase relative to the input wave. Besides
the transmission coefficient, one can also determine the
phase velocity and group velocity from Eq. (1), since

vp ¼ wL=j ; vg ¼ dw=dk ¼ L dw=dj : ð2Þ
In Figs. 2 and 3, we compare the MST predictions for the
band structures of our crystals with the amplitude trans-
mission coefficients for 7-layer thick samples along the
[111] direction. For the mixed tungsten carbide/water crys-
tals, a large complete band gap is seen, covering a fre-
quency range from 0.98 MHz to 1.2 MHz [43], with the
stop band along the [111] direction extending from 0.8 to
1.2 MHz. In the middle of the gap, the transmission for a
7-layer crystal drops by almost a factor of 100. By con-
trast, for the solid tungsten carbide/epoxy crystals, there is
also a complete band gap, but it is much larger, extending
from about 1.5 to 3.9 MHz, a frequency range that is 90%
of the mid-gap frequency. As can be seen in Fig. 3, the
position of the gap defined by the transmission calculation
agrees fairly well with the band structure calculation.
However, the position of upper band edge is a little higher
for the transmission coefficient, a difference that results
from the finite sample effect: theoretically the band struc-
ture calculation is based on an infinite crystal. Perhaps the
most striking result shown by the transmission calculation
for the solid crystal (right panel of Fig. 3) is the very
small transmission that is predicted in the band gap: the
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Fig. 1. Schematic graph showing how to
calculate the scattering matrix for a 2 layer
phononic crystal from that for two 1-layer
crystals.
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amplitude transmission coefficient for a 7-layer crystal is
reduced by 7 orders of magnitude compared to the maxi-
mum transmission in the pass band. Comparison between
these theoretical predictions and experimental data is given
in the next two sections.

4. Tungsten carbide/water crystals

Mixed crystals of tungsten carbide beads in water were
chosen as an ideal system in which to study wave propa-
gation near a band gap, since this combination of solid
and liquid materials has one of the largest possible density
differences between the scatterers and the matrix, and is
sufficient to ensure a complete gap for the fcc structure
[43–44, 49]. In this section, we review how ultrasonic
experiments and multiple scattering theory can be used to
gain an in-depth understanding of how band gaps dramati-
cally affect the properties and character of waves in peri-
odic media, and then focus on the large dispersion effects
that we have observed in this system.

When a pulse is transmitted through a phononic crystal,
both the amplitude and phase show large variations with fre-
quency. By taking the ratio of the magnitudes of the Fourier
transforms of the transmitted and input pulses, the frequency

dependence of the amplitude transmission coefficient can be
determined over the bandwidth of the transducers used. Re-
sults for a large number of sample thicknesses are shown in
Fig. 4, where the experimental data are also compared with
the predictions of the Multiple Scattering Theory. The large
drop in the transmission near 1 MHz shows that the stop
band in the [111] direction extends from approximately 0.8
to 1.2 MHz. This figure also shows that the amplitude A de-
creases exponentially with sample thickness in the band
gap, consistent with a change from propagating modes
outside the gap to evanescent modes inside the gap. These
evanescent waves have an imaginary wave vector k and
decay as A(L) ¼ A0 exp [�kL], with k ¼ 0.93 mm�1 in the
middle of the gap. The (complex) Fourier transforms of
the transmitted and input pulses also allow the change in
phase of the transmitted waves relative to the input waves
(i.e. the phase difference) to be measured as a function of
frequency. Results for a 6-layer and 12-layer tungsten car-
bide/water crystal are shown in Fig. 5a, where the experi-
mental data (symbols) are compared with the predictions
of multiple scattering theory (solid curves). As for the

862 J. H. Page, S. Yang, Z. Liu et al.

Fig. 2. Left panel: band structure of a fcc crystal consisting of tung-
sten carbide beads (diameter 0.8 mm) in water. Right panel: MST
predictions for the frequency dependence of the amplitude transmis-
sion coefficient near the band gap for a 7-layer crystal.

Fig. 3. Left panel: band structure of a fcc crystal consisting of tung-
sten carbide beads (diameter 0.8 mm) in epoxy. Right panel: MST
predictions for the frequency dependence of the amplitude transmis-
sion coefficient for a 7-layer crystal.

Fig. 4. Frequency dependence of the amplitude transmission coeffi-
cient along [111] near the band gap at 1 MHz for the tungsten car-
bide/water phononic crystals.

a�

b�

Fig. 5. (a) The frequency dependence of the cumulative phase along
the [111] crystal direction for 6-layer and 12-layer tungsten carbide/
water samples. The solid lines are the theoretical predictions from the
MST and symbols are the experimental data. The guide lines (dotted
lines) are the results for waves in pure water. (b) The frequency de-
pendence of the phase velocity for the 12-layer sample.
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transmission, good overall agreement between experiment
and theory can be seen, although the experimental phase
change above the band gap is somewhat larger, due to a
small shift in the upper band edge. To compare with the
wave properties in a homogenous material, the phase
changes through the same distances in pure water are indi-
cated by the dotted guide lines (these water lines play the
same role here as light lines for photonic crystals). At low
frequencies or in the long wavelength limit, waves cannot
resolve each scatterer, as the wavelength of the sound is
much bigger than the lattice constant. Thus the dispersion
relationship should be linear at low frequencies, so that the
phase change goes to 0 as frequency goes to 0. Hence the
ambiguity of 2p in the inverse tangent function can be
eliminated, and the true cumulative phase measured and
calculated as a function of frequency over the entire fre-
quency range. At the lowest frequencies, the phase change
through the crystal is very close to that in water, but sub-
stantial differences appear as the frequency gets higher. In
particular, at the frequencies inside the gap, the phase
change through each crystal exhibits a plateau of magnitude
np, where n is the number of layers; this is a nice demon-
stration that the condition for Bragg scattering, namely that
the layer thickness be equal to half the wavelength, is satis-
fied in the band gap. At higher frequencies, the cumulative
phase continues to increase, showing that, unlike phonons
in atomic crystals, phase changes greater than p per layer
are directly measured and physically meaningful.

Figure 5b shows the frequency dependence of the
phase velocity in the vicinity of the band gap, as deter-
mined directly from the cumulative phase using equation
(2). At low frequencies, the phase velocity approaches the
water velocity. Below the band gap, the phase velocity
exhibits n� 1 oscillations, where n is the number of
layers, an interference effect resulting from boundary re-
flections that correspond to normal modes of the crystal;
these oscillations are also seen in the transmission and the
cumulative phase, but are more pronounced in the phase
velocity. In the vicinity of the gap, a strong frequency de-
pendence is seen, indicating that dispersive effects may be
important in this range of frequencies. These are discussed
in more detail below.

The measurements of cumulative phase also allow the
dispersion curve, w versus k ¼ j/L, to be measured di-
rectly in the extended zone scheme. The results along the
[111] direction are shown in Fig. 6, where the experimen-
tal data are again compared with the MST. The large gap
near 1 MHz is evident from the sharp rise in the disper-
sion curve, followed at higher frequencies by a more gra-
dual increase. Interestingly, the narrow stop band near
1.5 MHz is barely discernable in the experimental data,
although it does show up in the theoretical predictions,
which lie above the experimental data between the gap
and the 4th pass band. These data for the dispersion curve
in the extended zone scheme can be folded back into the
reduced zone scheme and compared with theoretical pre-
dictions for the band structure. Good agreement between
experiment and theory is found, as shown in Ref. [43],
which gives a good example of how ultrasonic measure-
ments can be used to investigate the band structure of
phononic crystals.

The observation that the transmitted amplitude in the
band gap decays exponentially with sample thickness sug-
gests that tunneling may be involved. To investigate this
possibility in more detail, and to gain additional insight
into the character of the modes inside the band gap, we
also measured the group velocity as a function of sample
thickness [43, 44]. These experiments were performed by
measuring the transit time of the peak of a narrow band
Gaussian pulse through crystals that were 3 to 12 layers
thick, using a digital filtering technique. Not only were
large values of the group velocity measured at all thick-
nesses (in all cases significantly larger than the velocity in
water), but the velocity was found to increase with thick-
ness (see Fig. 7), an unusual result that is characteristic of
tunneling in quantum mechanics [52]. However, the ex-
perimental values of vg were smaller than the theoretical
predictions of the MST when no absorption is present in
the crystals, as can be seen by comparing the solid circles
with the open squares in Fig. 7. This figure also shows
that for thicknesses greater than 5 layers of beads, the
MST predictions with no absorption are described accu-
rately by L/tg, with a constant value of the tunneling time
tg ¼ 0.54 ms (solid line), as expected for tunneling when
kL� 1. The reduction in the measured values of vg rela-

3D phononic crystals 863

Fig. 6. Comparison of the measured dispersion curve along the GL
direction in the extended zone scheme with the predictions of the
layer MST.

Fig. 7. Dependence of the group velocity on thickness for the tung-
sten carbide/water phononic crystals.
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tive to these theoretical predictions can be explained by
absorption in the phononic crystals, an effect that has a
simple physical interpretation: In the band gap, the role of
absorption is to make the destructive interference that
gives rise to the band gap incomplete, with the result that
a small amplitude propagating mode survives in addition to
the evanescent tunneling mode. Quantitative agreement
with the experimental results was obtained using the “two-
modes” model, which assumes the two modes contribute to
the measured group time in parallel, so that the group velo-
city can be calculated from the weighted average of the
tunneling time ttun and the propagation time tprop ¼ L/vprop.
Thus, �vvg ¼ L=½wtttunþwpðL=vpropÞ�, where ttun and vprop are
independent of thickness, and wt and wp are the weighting
factors. These weighting factors are proportional to the
coupling coefficients and attenuation factors of each mode
i, ci exp [�kiL] [43, 44]. The best fit to the data, shown
by the dashed curve in Fig. 7, was obtained with
ctun ¼ 0.95, showing that the tunneling mode is dominant,
and with an attenuation factor that is slightly larger for the
propagating mode, suggesting that the propagating compo-
nent becomes gradually less important as the thickness in-
creases over this range. The excellent fit to the data shows
that this simple model can successfully account for the
effects of absorption on the tunneling of ultrasonic waves
in phononic crystals, and provide a clear physical picture
of the underlying physics.

These results also raise an interesting question: does
absorption lead to a saturation of the group velocity in
very thick samples, so that the transit time no longer be-
comes independent of sample thickness as in the “pure“
tunneling case? To investigate this question, we have also
calculated the group velocity by incorporating absorption
into the MST by making the longitudinal modulus of the
water complex. (Since the ultrasonic energy density inside
the beads is less than 1% of the energy density in water at
frequencies inside the band gap, absorption in the beads
has little effect). These MST predictions, calculated using
an absorption coefficient kabs ¼ 0.072 mm�1, are shown
by the open triangles in Fig. 7 over a very large range of
sample thicknesses, well beyond those at which the trans-
mitted signal has become too small to measure experimen-
tally. Thus, for this constant value of dissipation, the
group velocity is predicted to become independent of
thickness at sufficiently large thicknessess, reaching a val-
ue that is approximately 8 times the velocity in water; in
other words, the tunneling time is predicted to be much
shorter than for normal propagation in water, but increases
with thickness in this large thickness limit. Again this be-
haviour can be fitted using the two modes model, providing
the attenuation factors are identical for the tunneling and
propagation modes so that the weighting factors are inde-
pendent of thickness. The result of this fit is shown by the
dot-dashed curve in Fig. 7, giving an excellent parameteri-
zation of the results of the MST calculation, and showing
that the enhancement of the group velocity in the large
thickness limit is a consequence of the relatively small
weighting of the propagating component (�14% in this
case). Note that, in the experimentally accessible range of
thicknesses, the MST predicts a slower dependence on
thickness than is observed experimentally, suggesting that

the absorption actually decreases with thickness in our
crystals. This decrease in absorption with thickness is not
unreasonable, since one of the important contributions to
dissipation is almost certainly frictional losses due to the
relative motion of the beads as the ultrasonic wave passes
through the crystal; these frictional losses are reduced in
thick samples where the beads are more constrained by
the weight of the beads in the layers above. As a result, in
our experiments the increase in the group velocity with
thickness is larger than predicted for constant absorption,
and the characteristics of tunneling clearly dominate the
observed behaviour of the group velocity. Thus, not only
has the tunneling of ultrasound been convincingly demon-
strated in these phononic crystals, but our experiments and
theory have also allowed the rather unusual effects of dis-
sipation on evanescent modes to be studied in some detail.
This dissipation has no counterpart for tunneling of a par-
ticle in quantum mechanics.

The large variation in the frequency dependence of the
cumulative phase near the band gap suggests other inter-
esting questions: Is the tunneling of a pulse dispersive,
and how significant is the dispersion near the band edges?
In photonic crystals, large dispersive effects near the band
edges have been found [22], but in these experiments the
crystals were too thick to allow measurements inside the
gap, because the transmission at gap frequencies was too
small to detect. However, such effects have not been stu-
died in phononic crystals, suggesting that a systematic
study of dispersion in phononic crystals is warranted. To
address this issue, we have investigated the frequency de-
pendence of not only the wave vector k, but also the in-
verse group velocity and the group velocity dispersion
(GVD). Here the inverse group velocity b1 is defined by
the first derivative of the wave vector k with respect to
angular frequency w, i.e., b1 ¼ dk=dw, and the group ve-
locity dispersion b2 is defined by its second derivative,
i.e., b2 ¼ d2k=dw2. The results of these measurements
for a 5-layer tungsten carbide/water phononic crystal are
shown in Fig. 8.

As can be seen from Fig. 8, the wave vector (bottom
panel) increases with frequency in the pass bands with
some oscillations, just as does the cumulative phase
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Fig. 8. Measured wave vector, inverse group velocity and group velo-
city dispersion (open squares) for a 5-layer tungsten carbide/water
crystal as a function of frequency. Theoretical predictions are given
by the solid lines.
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shown in Fig. 5a. However inside the band gap, k is al-
most constant over a wide frequency range, exhibiting a
very small, almost linear increase with frequency. This
means that the first order derivative (inverse group velo-
city) should be very small, while the second order deriva-
tive (GVD) and all higher order derivatives should be
nearly zero. This is clearly seen in data for b1 and b2

shown in top two panels of Fig. 8. In particular, the GVD,
which determines the change in the width of a pulse as it
propagates through a medium, is consistent with zero
within experimental error. In other words, no measurable
dispersion of a pulse inside the band gap is expected on
the basis of these data, even though the scattering is very
strong and the phase velocity varies considerably
(Fig. 5b). This further demonstrates that the wave does not
propagate in a normal way through a phononic crystal at
the gap frequencies, and that tunneling is essentially dis-
persionless.

In contrast to the lack of dispersion at frequencies in-
side the gap, the inverse group velocity (middle panel of
Fig. 8) shows peaks at the band edges, which means there
is a strong suppression of the group velocity on both sides
of the band gap. At the band edges, the group velocities
are only about 0.4 mm/ms, much less than the normal
sound velocity in either component (water: 1.49 mm/ms,
tungsten carbide: longitudinal velocity 6.655 mm/ms and
transverse velocity 3.23 mm/ms). The theory gives good
overall agreement with the measurements, although there
is a small shift in the experimental data relative to the
theory at frequencies above the band gap, indicating that
the measured gap width is slightly less than the predicted
one.

From the behaviour of the group velocity dispersion
shown in the top panel of Fig. 8, we can see that at the
frequencies below the gap, the GVD increases rapidly,
reaching a maximum positive value and then dropping
quickly to a minimum negative value before approaching
zero at the band gap. At frequencies above the gap, it
behaves in the opposite way, having a maximum closest to
the band edge, followed by a sharp minimum. This beha-
viour reflects the modal structure that is clearly resolved
in thin samples, and masks the smooth increase in the
GVD that is expected from the average curvature seen in
the dispersion relation (Fig. 6) below the band gap, and
the negative GVD that would be expected from the aver-
age curvature of the dispersion curve above the band gap.
Thus, the way in which the GVD approaches zero at the
band edges is different to the predictions for thick crystals
in Ref. [22], where it is pointed out that the group velocity
dispersion should rapidly decrease to zero from its maxi-
mum positive value below the gap and increase rapidly to
zero from its minimum negative value above the gap.

Figure 9 gives some real examples of pulse envelopes
to show explicitly how the dispersion affects the trans-
mitted pulse shapes at different frequencies. This figure
shows three long pulses (bandwidth 0.02 MHz) with cen-
tral frequencies at the lower band edge (0.744 MHz), in-
side the band (0.972 MHz) and at the upper band edge
(1.2 MHz), transmitted through the same 5-layer phononic
crystal of tungsten carbide beads in water. Here, the cen-
ters of the input pulses are set to time zero. These input

pulses are not plotted for the purpose of clarity. In order
to clearly show the distortion of the transmitted pulses, we
normalize both the sample and input pulses to the same
peak magnitude, and shifted the input pulses (solid lines)
so that the peaks align with those of the sample pulses
(open squares). Thus, the peak positions of the sample
signals still reflect how long it took for the input pulses to
travel through the sample, but the shapes of the trans-
mitted and input pulses can readily be compared. It is
worth noting that in all three cases, the peak pulse travel
times accurately correspond to the group times calculated
from the derivative of the phase with frequency, via the
definition of the group velocity as vg ¼ dw/dk.

It can be seen that, at the frequency inside the gap, it
takes much less time for the pulse to travel (tunnel [43])
through the sample and that no distortion of the pulse oc-
curs, consistent with the prediction of the GVD measure-
ments that tunelling is dispersionless. By contrast, the
pulses at frequencies near both band edges travel much
slower and in both cases there is significant pulse broad-
ening. However, since the band width is very narrow, only
about 2.7% of the smallest central frequency, the trans-
mitted pulses are still fairly symmetric and the group velo-
city can still be defined and accurately measured.

To end this section, we examine how the inverse group
velocity and group velocity dispersion evolve as the crys-
tal thickness is varied, both at gap frequencies and at fre-
quencies near the band edges. The theoretical predictions
and experimental data are given in Figs. 10 and 11, re-
spectively. We first present the theoretical results (Fig. 10).
In the top panel, we plot the thickness dependence of the
(negative) GVD (d2k=dw2) at the first dip at the lower
band edge (solid squares), the positive GVD (solid trian-
gles) at the first peak at the upper band edge (as indicated
by arrows in Fig. 8), and the GVD in the middle of the
gap at 0.947 MHz (open circles). It can be seen that the
GVD in the gap is independent of the sample thickness
with a value near zero. This is consistent with the predic-
tion given by Imhof et al. for photonic crystals [22]. How-
ever, the magnitude of the GVD increases with sample
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Fig. 9. A demonstration of pulse broadening at different frequencies
(at the lower band edge, inside the band, and at the upper band
edge). The pulse bandwidth is 0.02 MHz. The reference pulses (solid
lines) have the same shape as the input pulses, which are centred at
0, but are manually shifted to a later time to make the comparison
with sample pulses (open squares) clearer. Thus the positions of the
peaks of the sample signals reflect how long it took for the input
pulses to travel through the sample at a certain frequency.
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thickness at frequencies around both band edges. The two
peak values of the inverse group velocity for both band
edges (solid squares/triangles for lower/upper band edges
respectively) and at a frequency of 0.947 MHz (open cir-
cles) are plotted in the middle panel, and the correspond-
ing wave vectors are given in the bottom panel. It can be
seen that the inverse group velocities at the gap frequency
are very small and decrease with thickness, which means
fast group velocities characteristic of tunneling. However,
the inverse group velocities at frequencies around the band
edges are very large and increase with the sample thick-
ness, which means a large suppression of the group velo-
city. The values of the wave vector at the upper and lower
inverse group velocity maxima (lower panel) move closer
together, reflecting a narrowing of the band gap as the
thickness increases. The experimental data (Fig. 11) show
the same trends, but both the inverse group velocity and
GVD have smaller values than the theoretical predictions
due to absorption, which was not accounted for in these
calculations.

5. Tungsten carbide/epoxy crystals

To demonstrate experimentally the conditions under which
very large phononic band gaps can be realized in three-
dimensional phononic crystals, we have also studied solid
3D crystals consisting of tungsten carbide or steel beads
in epoxy. Our MST calculations for the tungsten carbide/
epoxy system (Fig. 3) predict a very wide band gap for
this system, a result that is consistent with previous calcu-
lations for other combinations of solid scatterers in a solid
matrix [23, 45]. Thus, this type of phononic crystal ap-
pears to be ideal for achieving wide gaps, but to our
knowledge no experiments have yet been reported on such
three dimensional systems. Because they are structurally
more robust than the mixed crystals considered in the pre-
vious section, solid crystals may also be better suited for
developing potential applications, such as ultrasound fil-
ters, sound mirrors, and other novel ultrasound devices.

The large increase in gap width that results from repla-
cing a liquid matrix by a solid one is shown in Fig. 12,
where we compare the measured transmission coefficient
for two 4-layer phononic crystals consisting of tungsten
carbide or steel beads in epoxy. These data also demon-
strate the effect of density contrast on the gap width. To
facilitate comparison with the mixed crystals, the transmis-
sion coefficient was again measured along the [111] direc-
tion. It can be seen that the band gaps are very wide for
both samples. These data appear to be the first to show
that such wide and deep gaps can actually be observed
experimentally. The band gap of the steel/epoxy sample
extends in frequency from 1.3 MHz to 3.7 MHz, while the
gap of the tungsten carbide/epoxy sample is wider, cover-
ing frequencies from 1.2 MHz to 4.3 MHz. Also the gap
for tungsten carbide/epoxy sample is about 10 times dee-
per than that of the steel/epoxy sample. The diameter of
the steel beads is 0.8014 mm, very close to tungsten car-
bide beads (0.800 mm diameter), and the crystal structures
and orientations are the same for two crystals. Thus the
difference of the gap width can only be attributed to the
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Fig. 10. Theoretical predictions from MST for the thickness depen-
dence of the wave vector and its first and second derivatives with
respect to frequency at the lower band edge, the middle of the gap
and the upper band edge.

Fig. 11. Measured thickness dependence of the wave vector and its
first and second derivatives with respect to frequency at the lower
band edge, the middle of the gap and the upper band edge.

Fig. 12. Measured amplitude transmission coefficients as a function
of frequency for 4-layer crystals of steel beads in epoxy (solid sym-
bols) and tungsten carbide beads in epoxy (open symbols). The
dashed and solid curves are the predictions of the MST without and
with absorption respectively.
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difference in elastic properties of steel and tungsten car-
bide (Table 1). As the sound velocities are almost the
same for steel and tungsten carbide, the difference is al-
most entirely due to the density difference alone. Thus, in
addition to showing that very large gaps can be achieved,
our measurements provide an experimental proof of the
theoretically predicted effect of the density contrast on the
gap width [23–24].

As can also be seen from Fig. 12, the waves are
strongly attenuated in the band gap; for the tungsten car-
bide crystal, the amplitude drops by 4 orders of magnitude
for a crystal that has only 4 layers (2.76 mm thick). Also
shown are the theoretical MST predictions for the tungsten
carbide/epoxy crystal. Since ultrasonic absorption is great-
er in epoxy than in water at these frequencies, it is impor-
tant to account for the effects of absorption in the epoxy
matrix. This was done by using complex Lamé constants
for epoxy, based on measurements of the absorption coef-
ficient in pure epoxy near 2.5 MHz, which lies in the mid-
dle of the relevant frequency range. The solid curve (MST
with absorption) and dashed curve (MST without absorp-
tion) in Fig. 12 show that absorption has almost no effect
at low frequencies, and only smoothes the transmission
coefficient at higher frequencies, having little effect on the
overall magnitude. It can be seen that the general beha-
viour of the calculated transmission coefficient and the po-
sitions of the lower and upper band edges agree well with
the data. The first dip in the theoretical predictions is in-
teresting, as it does not show up in the experimental data.
It is also interesting that the transmission coefficient does
not decrease monotonically towards the gap minimum and
then rise monotonically throughout the rest of the gap, as
in the case of the tungsten carbide/water crystals, but
shows some structure. This structure shows up in both
experiment and theory.

To examine the dependence of the transmission coeffi-
cient on sample thickness, a 7-layer tungsten carbide/
epoxy sample was also constructed. The measured ampli-
tude transmission coefficient, as well as the theoretical
prediction from MST, is shown in Fig. 13. The data for
the 4-layer sample are also included for comparison. First,

it is obvious that the gap becomes deeper for the 7-layer
sample, and that the decrease in amplitude at gap fre-
quencies is approximately exponential, as expected for
evanescent modes (T � 10�4 and �10�7 for the 4-layer
and 7-layer crystals, respectively). This large amplitude
decrease near 2.5 MHz in the middle of the gap corre-
sponds to an imaginary (evanescent) wave vector that is
approximately 4 times larger than in the tungsten carbide/
water crystals. As the thickness increases, the measured
lower band edge shifts to higher frequency, from
1.22 MHz (for the 4-layer sample) to 1.37 MHz (for the
7-layer sample), while the position of the upper band edge
almost remains the same for both samples. In the theoreti-
cal calculation, absorption in the epoxy matrix is included,
as for the solid curve in Fig. 12. It can be seen that the
general trends shown by the theory, as well as the posi-
tions of the lower and upper band edges, agree well with
the data. The agreement is in fact excellent compared with
previous transmission measurements and theory for 2D
phononic crystals [34–35, 40–42], although it is not as
good as that found for our water based crystals.

The band structure calculation shown in Fig. 3 predicts
that the gap seen in these transmission experiments is a
complete gap, covering the frequency range from about
1.5 MHz to 3.9 MHz. To investigate the existence of a
complete gap experimentally, we measured the transmis-
sion along other crystal directions by rotating the crystal
in the plane defined by G, K and L. The measurements
were performed at 10 different angles, for angles a ran-
ging up to 30� away from [111] towards the [110] direc-
tion, and for angles b up to 31.5� away from [111] to-
wards the [001] direction. (a ¼ 35.3� corresponds to the
[110] or K direction, and b ¼ 54.7� corresponds to the
[001] or X direction.) We found that the transmission
coefficients in all these directions show a wide gap, and
the positions of these gaps are close to the one along the
[111] direction (corresponding to a ¼ 0�). For simplicity,
we show only the results at the two largest angles, which
are compared with the results measured along the [111]
direction in Fig. 14. Despite the noise in the data at high
frequencies, the gap properties can still be seen for all
these crystal directions. In particular, the lower band edges
for a ¼ 30� and b ¼ 31.5� shift to lower frequencies com-
pared with the [111] direction, which agrees well with the
prediction of the band structure calculations, where the
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Fig. 13. Comparison of the amplitude transmission coefficients for
4-layer and 7-layer fcc phononic crystals made from tungsten carbide
beads in epoxy.

Fig. 14. Transmission coefficient measured for different angles of in-
cidence relative to the [111] direction.



T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r. 

lower band edge is predicted to occur at lower frequencies
along GK and GX than along GL. Thus, even though we
have not attempted to correct these data for refraction at
the crystal interfaces, the fact that the gap persists over
such a wide range of angles supports the predictions of
the band structure calculations that the band gap between
1.5 and 3.9 MHz is both wide and complete.

Given that the band gap in the tungsten carbide epoxy
crystals is so large, one might expect that the group velo-
city would show even more extreme values in the vicinity
of the band gap than were seen in the water-based crys-
tals. Indeed for the 4-layer sample, the measured group
velocity is around 15 mm/ms in the low frequency part of
the band gap (near 1.7 MHz), about 4 times larger than
for the tungsten carbide/water sample of the same thick-
ness. Even larger values of the group velocity (reaching a
maximum of 27 mm/ms) are predicted theoretically, even
when the absorption in the epoxy is included in the MST
calculations. However, the experimental data are fairly
noisy due to the small signal levels. Thus, while the large
values of the group velocity found between 1.5 and
2 MHz are consistent with a tunneling mechanism, we
were not able to investigate the dependence of group time
on crystal thickness in the current experiments, because
signal to noise limitations precluded accurate measure-
ments of vg for the 7-layer crystal. Also, at higher frequen-
cies within the gap, smaller values the group velocity are
found, in both the experimental data and in theoretical
calculations, raising interesting questions about the charac-
ter of the modes seen in the gap at these higher frequen-
cies. Further experiments are planned to investigate this
behaviour in more detail. Another topic for future work is
an in-depth study of the effects of absorption on the tun-
neling of ultrasound in the epoxy crystals, where the spa-
tial distributions of both the absorption and the field are
likely to be non-uniform.

6. Conclusions

Using pulsed ultrasound techniques and multiple-scattering
theory (MST), we have systematically studied two types
of phononic crystals –– one with solid tungsten carbide
beads immersed in water and another one with tungsten
carbide (or steel) beads embedded in epoxy. Both crystal
systems were found to exhibit complete band gaps. Be-
sides investigating the band structures through both calcu-
lations and measurements, we also studied ultrasound tun-
neling and the anomalous dispersion of ultrasound near
the band edges. Evidence for tunneling was shown by the
increase in the group velocity with crystal thickness that is
seen in both theory and experiment. In the absence of
absorption, the ultrasound tunneling time was found to
be independent of the phononic crystal thickness, with
ttun Dwgap � 1 in the middle of the gap (here ttun is the
tunneling time and Dwgap is the width of the phononic
band gap). Over the range of sample thicknesses that
could be investigated experimentally, the tunneling time
also appeared to approach a constant value; however the
experimental tunneling time is larger than the theoretical
predictions without absorption, an effect that is attributed

to dissipation in the phononic crystals and is well ex-
plained by the two-modes model. By contrast, for very
thick samples, our MST calculations show that the tunnel-
ing time no longer approaches a constant value but in-
creases with thickness at a rate that is consistent with a
constant, but large, group velocity. Thus in sufficiently
thick crystals, the effect of absorption is to cause the weak
propagating mode that results from incomplete destructive
interference at gap frequencies to dominate, and obscure
the dramatic effects of tunneling on pulse propagation.

In contrast to the very fast group velocities at gap fre-
quencies that are seen in both experiment and theory, a
strong suppression of the group velocity was found at the
band edges, where large dispersive effects on pulse propa-
gation were observed. This behaviour was characterized by
measuring and calculating the group velocity dispersion
(GVD), which plays a role in phononic crystals that is ana-
logous to the reciprocal of the effective mass for electrons
in semiconductors. Near the band edges, large oscillations
in the GVD were found, while inside the band gap, the
GVD was immeasurably small, indicating that ultrasound
tunneling in phononic crytsals is essentially dispersionless.

The agreement between MST theory and the experiments
is excellent in general. However, the differences between the
experimental and theoretical results (mainly for the solid
crystals) are compelling arguments for seeking possible
future improvements to the theory, such as developing a
first principles model for sound absorption in the crystals.

These fundamental studies of phononic crystals suggest
a number of possible applications, which have also at-
tracted considerable interest recently. One straightforward
idea is based on the existence of complete gaps over cer-
tain frequency ranges. Since phononic properties scale well
with frequency, one can change the position of the fre-
quency gaps by simply altering the size of the building
blocks. Thus phononic crystals are promising materials to
shield noise for sophisticated devices over specific fre-
quency ranges. Our solid tungsten carbide/epoxy crystal,
which attenuates ultrasound very efficiently over a wide
frequency range along all directions, can be a candidate for
such application in ultrasonic devices. This type of phono-
nic crystal could also be used as a sound mirror, as very
little signal can penetrate the crystal at the gap frequencies,
and most of the sound waves are strongly reflected back
regardless the incident angle. Other applications based on
the transmission properties are band pass filters, which
have possible applications in transducer design.

More recently, attention has turned to another class of
applications based on the focusing properties of phononic
crystals, which exploit the negative refraction of ultra-
sound [49, 50]. The driving force behind much of this
interest is the possibility of achieving better resolution
than can be realized with conventional lenses, and the pos-
sibility of taking advantage of the novel beam bending
capability of phononic crystals to shape narrow sound
beams with good collimation. Such well-collimated sound
beams could play an important role in future sound de-
vices. These examples further illustrate the rich potential
of phononic crystals in device applications that comple-
ment their importance for advancing our knowledge of
wave transport in periodic media.

868 J. H. Page, S. Yang, Z. Liu et al.
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